17 января 2007 г.

Эмпирические и фундаментальные теории

Мне хочется сделать одно методологическое пояснение к недавней новости Наступает новая эра в теоретической ядерной физике. Главное утверждение этой заметки состоит в том, что ядерная физика, которая вот уже лет 70 оставалась чисто эмпирической теорией, стала мало-помалу выводиться из первых принципов, из динамики кварков и глюонов.

Может показаться не очень понятным, а какая вообще разница -- эмпирическая у нас теория или фундаментальная? Чем одно предпочтительнее другого? Про это я и хотел бы здесь подробно рассказать.

1. Что такое эмпирические законы и что такое фундаментальная теория.

Рассмотрим конкретный пример -- движение планет вокруг Солнца.

Вначале Тихо Браге много лет следил за положением планет, но не пытался найти в них математический закон. Затем Кеплер взял эти записи и выяснил, что планеты движутся по эллипсам, в одном из фокусов которых находится Солнце. Кроме того, он заметил, что движение планет по эллипсам не равномерное, а такое, чтоб выполнялись некоторые законы (известные сейчас как законы Кеплера).

Это -- пример описательной, эмпирической теории. У нас есть формула -- т.е. просто обобщение экспериментальных данных, и вроде как природа этой формуле подчиняется, и на основе её можно делать предсказания относительно движения этих планет в будущем. Однако она не вычислена, не выведена ниоткуда, а значит, непонятно, какое свойство природы она описывает. Появляются вопросы, на которые в рамках этой описательной теории не ответишь. Обязаны ли быть только эллипсы, или же возможны другие орбиты, например, в форме восьмерки, а нам просто повезло, что планеты в солнечной системе вращаются именно так? А какого размера могут быть эти эллипсы, есть ли какие-то ограничения на их полуоси, на их вытянутость? А каковы будут орбиты планет, вращающиеся вокруг других звезд -- может всё это зависит от свойства центральной звезды? А как будут вращаться вокруг Солнца очень маленькие тела, размером с кирпич?

В общем, в эмпирических теориях/моделях каждый конкретный случай -- это отдельная сущность, отдельная данность свыше. Нет универсальности, нет понимания, в чём причина таких простых законов. (А они действительно чрезвычайно просты по сравнению теми петляниям и попытным движением, которое мы ВИДИМ с Земли.)

Ньютон построил точную, фундаментальную, глубинную теорию этого движения. Исходя из одного единственного закона -- всемирного тяготения -- он вывел эллипсы, все законы Кеплера, для всех планет и вообще для любых тел. Поставленные выше вопросы сразу же получают ответ.

Итак, в фундаментальные теории данность свыше только одна -- исходные уравнения. Все частные случае отсюда следуют.

2. Еще немного про эмпирические теории.

Примеры разных эмпирических теорий:

-- вся средневековая (ал)химия до Лавуазье
-- термодинамика в 19 веке, до развития статистической физики
-- периодический закон Менделеева до создания квантовой физики
-- ранняя теория атомных спектров, основанная на постулатах Бора, до создания квантовой механики
-- множество теорий, описывающих свойства вещества, -- магнетизм, сверхпроводимость, сверхтекучесть, и т.п. -- до их микроскопической формулировки.

3. Теперь вернемся к ядерным силам.

Законы Кеплера -- это еще самая "чистейшая" из эмпирических теорий. В ней нет подгоночных параметров. В большинстве же эмпирических теорий не просто постулируются (на основе экспериментальных наблюдений) какие-то простые законы, но еще в них присутствуют некие численные параметры. Эти параметры просто подбираются так, чтоб данные описывались наилучшим образом. Откуда эти параметры берутся и почему они равны именно этим значениям, в эмпирических теориях не обсуждается.

Ядерная физика, которая есть просто определенная разновидность адронной физики низких энергий, одна из самых "грязных" -- в смысле, одна из самых "запараметризованных" -- из эмпирических теорий.

Экспериментальных данных много, поэтому обобщить их, увидеть в них какие-то простые закономерности нетрудно. Эти закономерности формулируются в виде ядерных нуклон-нуклонных сил плюс еще некоторые простые законы (на них были основаны ранние модели ядра: капельная модель, оболочечная модель). Это всё эмпирические теории. На основе них можно производить расчеты, чем физики-ядерщики уже 70 лет и занимаются. Можно даже предсказывать свойства еще не открытых ядер и т.д. Это всё работает.

Настоящего теоретика это не может удовлетворить именно по той же причине, что и раньше. В таком описании каждая экспериментальная особенность -- это "данность свыше". Профиль нуклон-нуклонных сил, профиль трехнуклонного взаимодействия (оно вовсе не разлагается в простую сумму попарных сил), сложный закон изменения этих сил при повышении температуры в ядре, тенденция образовывать особенно устойчивые островки внутри ядер...

Но это всё были только нуклоны. А ведь в ядро можно поместить и более экзотические частицы, лямбда-гипероны, сигма-гипероны и т.д. и изучать свойства этих гипер-ядер. И опять -- для каждого нового гиперона приходится извлекать из опыта закон парного взаимодействия, как друг с другом, так и с нуклонами, и т.д.

ВСЕ эти вещи в эмпирической теории приходится определять из экспериментальных данных отдельно. Численные параметры в этих моделях -- массы, коэффициенты связи разных частиц друг с другом и т.д. -- тоже не сосчитаешь, а надо подбирать вручную, чтоб кривые наилучшим образом описывали данные.

Это очень досадно, потому что мы-то знаем, что всё это должно сводиться к взаимодействую кварков и глюонов. Более того, физики знают ТО САМОЕ уравнение, из решения которого должно получиться всё вышеперечисленное: и массы, и коэффициенты связи, и профиль потенциала нуклон-нуклонных сил. Беда лишь в том, что это уравнение очень трудно решить.

Это примерно, как если бы у преступника в руках была банковская карточка с миллионом долларов, но он не знал бы пин-кода :) Он бы всеми силами искал способ его узнать, не находил бы себе места. Примерно такое ощущение и у физиков, только они сдерживаются в проявлениях :)

Подведу итог про теории разного уровня.

1. Чисто эмпирические теории. Есть законы, полученные обобщением экспериментальных данных, но откуда они берутся и что подразумевают -- непонятно. Никакой глубокой точной теории нет.

2. Глубинный закон есть, но он слишком сложен, и его решения для изученных в эксперименте ситуаций получить не удается. В этом случае он ничем нам не помогает, и нам всё равно приходится прибегать к эмпирическим моделям.

3. Глубинные уравнения удается решить численно, на компьютере. Тогда законы, построенные в эмпирической теории можно проверять. Если они подтверждаются, то говорят, что этот закон выведен из первых принципов.

4. Глубинная теория допускает аналитическое решение. Есть формулы для всего, что надо.

В заметке Наступает новая эра в теоретической ядерной физике как раз описывается, что ядерная физика постепенно переходит из категории 2 в категорию 3.

[Комментарии на Элементах]

2 комментария:

  1. Спасибо, очень доходчиво.
    А что это за ТО САМОЕ уравнение?
    И подгоночные параметры за ними могут скрываться какие-нибудь смыслы? Не могли бы Вы несколько из этих параметров назвать - или это просто буквы? Спасибо еще раз

    ОтветитьУдалить