25 сентября 2006 г.

Дифракция в физике элементарных частиц: рассказ второй

РАССКАЗ ВТОРОЙ: ДИФРАКЦИОННЫЕ ПРОЦЕССЫ -- ОТ ВОЛНОВОЙ ОПТИКИ ДО ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

В предыдущем рассказе я описывал то, как в физике элементарных частиц изучаются разные явления микромира. В частности, два ключевых аспекта сильного взаимодействия -- общие свойства адронов и их глубинная кварковая структура -- изучаются в реакциях столкновения при очень малых и очень больших энергиях. Было замечено, однако, что существует еще один класс адронных реакций -- дифракционное рассеяние, который является ключом к новому свойству адронов -- возникающих в них динамических структур при высоких энергиях. Сейчас поговорим о том, что же такое эта дифракция.

Дифракция света: удивительное, но неизбежное явление

Начну с полезного замечания, осознание которого пришло к физикам не сразу, а после длительного изучения реакций столкновения адронов. Несмотря на то, что фотон не является связанным состоянием кварков и вообще ни из чего не состоит, с точки зрения адронных реакций он ведет себя как типичный адрон. Более того, он ведет себя как адрон с наипростейшей структурой. Именно поэтому мы в дальнейшем часто будет обсуждать фотон-адронные столкновения как один из простейших примеров адронных реакций.

Представим себе процесс столкновения фотона с покоящимся тяжелым ядром. Если энергия фотона мала по сравнению с типичными ядерными энергиями (1 МэВ), то идет чисто упругое рассеяние -- эффект Комптона, но только на ядре. Если энергия фотона превысит типичную энергии ядерных возбуждений, то процесс столкновения будет преимущественно неупругий. В ГэВном диапазоне энергий падающий фотон уже обладает достаточной энергией, чтобы разрушить ядро на несколько осколков. Наконец, при еще более высоких энергиях происходит не только развал ядра, но и рождение множества иных частиц. Такая картина вовсе не специфична для фотон-ядерных столкновений, а наблюдается при соударении любых адронов. Можно сказать так: при больших энергиях столкновения адроны становятся очень "хрупкими" объектами.

Зададимся теперь вопросом: какова вероятность того, что в фотон-ядерных столкновениях при сверхвысоких энергиях ядро не разрушится? С учётом только что сказанного кажется естественным, что чем выше полная энергия, тем меньше вероятность ядру "выжить" в этом столкновении. Можно сравнить столкновение адронов со столкновением двух хрустальных ваз с большой скоростью -- вероятность упругого рассеяния в этом случае исчезающе мала. Поэтому может показаться очень удивительным, что эксперимент дает для этой вероятности с добрый десяток процентов. Более того, оказывается, что доля упругого процесса вовсе не падает с ростом энергией, а остается примерно постоянной! (На самом деле она даже растёт с ростом энергии, но очень медленно; он этом будет чуть попозже).

Такое удивительное поведение вероятности упругого рассеяния, на самом деле, легко объясняется квантовой механикой. Представим себе аналогичный опыт с рассеянием света на маленьком непрозрачном, абсолютно поглощающем свет шарике. Если забыть про волновую природу света, то есть представлять его как пучок прямых световых лучей, то каждый луч может либо пролететь мимо, никак не отклонившись, либо попасть на шарик, полностью поглотившись. Однако это не вся правда: благодаря тому, что свет -- это еще и волна, он еще может дифрагировать, как бы отклоняться от первоначального направления распространения. Стандартная задачка для студентов третьего курса -- доказать, что вероятность упругого рассеяния квантовой частицы на полностью поглощающем шарике равна 50%.

Как происходит дифракция фотона?

Всё бы хорошо, но возникает вопрос: как именно, за счёт каких сил фотон отклоняется при дифракции? Это важный момент, и поэтому опишем его чуть подробнее.

Важно понимать, что это чисто геометрический эффект, и тут нет никакого нового силового взаимодействия. Свет, приходящий с какого-то фиксированного направления, представлояет собой плоскую волну: прямой ровный фронт, распространяющийся строго вперед. Это -- абсолютно неизбежная связь. Фиксированное направление распространения -- это неизбежно гладкий волновой фронт, без изъянов. Соответственно, неплоский фронт неизбежно представляет собой поток света, приходящий с разных направлений (или уходящий в разные направления).

Когда на пути светового плоского фронта возникает непрозрачный шарик, то в структуру световой волны вносятся большие возмущения: ведь непосредственно за шариком световое поле имеет резкий провал. Такое световое поле неизбежно распадается на набор лучей, расходящихся в разные стороны от шарика. Это и есть дифракция.

То, что аналогичный эффект происходит и с рассеянием света на ядрах, уже не кажется удивительным. Раз свет -- волна, значит он может дифрагировать на препятствиях, в том числе и на ядрах, с этим не поспоришь. Но раз дифракция -- чисто волновой эффект, не связанный конкретно с фотонами, то она должна иметь место при столкновении любых частиц, например, при столкновении двух протонов при высокой энергии. Протоны -- как и любые другие частицы в микромире -- обладают волновыми свойствами, а значит, точно также, как и свет, могут испытывать дифракцию. Можно сказать, что дифракционные процессы в столкновении адронов еще раз напрямую доказывают волновые свойства сталкивающихся частиц.

Взаимопревращения частиц -- новые грани дифракции

В отличие от волновой оптики или квантовой механики, ситуация в квантовой теории поля обладает важной особенностью. В квантовой механике нет взаимопревращения частиц: фотон, падающий на препятствие, может дифрагировать, но он остаётся при этом фотоном. В квантовой теории поля разрешены -- и активно происходят -- превращения одних частиц в другие: главное, чтобы при этом соблюдались "правила игры", т.е. сохраняющиеся величины: энергия, импульс, заряды, а также зачастую спин и другие квантовые числа.

Благодаря этим превращениям открываются новые возможности для процессов типа дифракции. Например, при столкновении фотона с протоном при больших энергиях очень активно идёт такая реакция: протон не изменяется, лишь чуть-чуть отклоняется, а фотон превращается в один из векторных мезонов: ро-мезон, фи-мезон, J/psi-мезон и т.д., летящий в том же направлении, что и исходный фотон. Несмотря на то, что в этих реакциях рождаются разные частицы, основные свойства этих реакций (им будет посвящен следующий рассказ) поразительно схожи. Глядя на экспериментальные данные, полученные в последние 5-10 лет, не возникает сомнения, что в глубине всех этих реакций лежит какой-то универсальный процесс, протекающий всегда одинаково, и лишь проецирующийся в конце на разные состояния.

Используя (загадочную пока) терминологию предыдущего рассказа, можно сказать, что этот процесс есть столкновение тех динамических структур, которые образуются в адронах при высоких энергиях.

Итак, выводы. Отклонение света на препятствиях -- представитель очень широкого класса дифракционных процессов. Во-первых, дифрагировать (то есть, слегка отклоняться без разрушения) может не только свет, но и любые микроскопические частицы. Это чисто волновой эффект, не связанный с конкретным типом взаимодействия. Во-вторых, дифракция без изменения типа частиц -- частный случай более общего дифракционного рассеяния, в котором частицы могут не только слегка отклоняться, но и "слегка изменяться" -- превращаться в другие, близкие по характеристикам частицы.

Детальный разбор обобщенной дифракции

Микроскопическая картинка для такой "обобщённой дифракции" чуть более абстрактна, чем приведенное выше микроскопическое объяснение дифракции света. Приведу для примера это объяснение в случае дифракционного превращения фотонов в векторные мезоны.

С точки зрения адронных реакций фотон -- это не "настоящая частица", не настоящий адрон, а очень специфическая комбинация целого ряда адронов: семейства ро-мезонов (основного и возбужденных состояний), семейства фи-мезонов и т.д. -- в общем, всех адронов, которые обладают тем же спином и четностями, что и фотон. Еще раз подчеркну: тот факт, что фотон -- это полноправная элементарная частица, квант электромагнитного поля, в мире адронных реакций никого не волнует. Для этого мира фотон -- это какой-то определенный набор кварк-антикварковых пар, который можно представить в виде наложенных друг на друга "истинных адронов" (правда, виртуальных, но это не суть важно). Такая суперпозиция адронов очень "сбалансирована". Если хоть чуть-чуть изменить вклад каких-то компонент, то в конечном итоге мы увидим на выходе не фотон, а комбинацию "фотон плюс другие мезоны".

Сразу после прохождения фотоном препятствия (протона, ядра и т.п.), в первоначальном волновом фронте появляется провал и -- кроме этого -- нарушается баланс разных адронных компонент в фотоне. Поэтому после такого возмущения в исходной волне появляются, кроме всего прочего, и мезоны, слегка отклонившиеся от первоначального направления движения фотона. Можно сказать, что дифракция как бы актуализирует адронные степени свободы, которые скрыто присутствовали в фотоне.

[Комментарии на Элементах]

6 комментариев:

  1. Читатель9/9/08 05:47

    Существует ли третья часть статьи?

    ОтветитьУдалить
  2. Пока еще нет, всё никак не соберусь написать.

    ОтветитьУдалить
  3. Перечитал обе статьи ещё раз, понял уже гораздо больше, спасибо за популяризацию :)

    Вопрос: "степени свободы адрона" - это возможность его превращения? Какие ещё есть в микромире степени свободы, отличные от степеней свободы материальной точки в макромире?

    ОтветитьУдалить
  4. Пожалуйста :)

    Вообще, степени свободы -- это через что можно описывать объект.
    Фраза "адронные степени свободы, которые скрыто присутствовали в фотоне" означает, что фотон можно описать как некую когерентную суперпозиию адронов с определенными квантовыми числами.

    ОтветитьУдалить
  5. Анонимный16/12/08 19:59

    так а какая именно суперпозиция адронов удовлетворительно результатам экспериментов описывает фотон? есть примеры? или число возможных комбинаций бесконечно? :)

    ОтветитьУдалить
  6. Да вполне конкретная: берете суперпозицию всех мезонов со спином 1 и отрицательными четностями (а строго говоря, надо и все многоадронные состояния сюда добавлять), пишите перед ними коэффициенты (зависящие от виртуальности фотона), которые завязаны на константы электрон-позитронного распада этих мезонов и получается "адронная часть" фотона -- т.е. то, на что следует заменять фотон в адронных реакциях.

    Подробные формулы см. в классическом обзоре
    The hadronic properties of the photon in high-energy interactions, Rev. Mod. Phys. 50, 261-436 (1978). Если хотите что-то покороче и онлайн доступное, то посмотрите начало статьи arXiv:0706.3717.

    ОтветитьУдалить